21) Low Rank#

Last time#

  • Condition number and SVD

  • SVD for solving systems

  • Costs of decompositions

Today#

  1. Reflection on algorithm choices

  2. Low-rank structure

  3. Primer on interpolation

using LinearAlgebra
using Plots
default(linewidth=4, legendfontsize=12)

function vander(x, k=nothing)
    if isnothing(k)
        k = length(x)
    end
    m = length(x)
    V = ones(m, k)
    for j in 2:k
        V[:, j] = V[:, j-1] .* x
    end
    V
end

function gram_schmidt_classical(A)
    m, n = size(A)
    Q = zeros(m, n)
    R = zeros(n, n)
    for j in 1:n
        v = A[:,j]
        R[1:j-1,j] = Q[:,1:j-1]' * v
        v -= Q[:,1:j-1] * R[1:j-1,j]
        R[j,j] = norm(v)
        Q[:,j] = v / R[j,j]
    end
    Q, R
end

function qr_householder(A)
    m, n = size(A)
    R = copy(A)
    V = [] # list of reflectors
    for j in 1:n
        v = copy(R[j:end, j])
        v[1] += sign(v[1]) * norm(v) # <--- here we pick the sign of v so that moves it the largest distance
        v = normalize(v)
        R[j:end,j:end] -= 2 * v * v' * R[j:end,j:end]
        push!(V, v)
    end
    V, R
end

function qr_chol(A)
    R = cholesky(A' * A).U
    Q = A / R
    Q, R
end

function qr_chol2(A)
    Q, R = qr_chol(A)
    Q, R1 = qr_chol(Q)
    Q, R1 * R
end

function peanut()
    theta = LinRange(0, 2*pi, 50)
    r = 1 .+ .4*sin.(3*theta) + .6*sin.(2*theta)
    r' .* [cos.(theta) sin.(theta)]'
end

function circle()
    theta = LinRange(0, 2*pi, 50)
    [cos.(theta) sin.(theta)]'
end

function Aplot(A)
    "Plot a transformation from X to Y"
    X = peanut()
    Y = A * X
    p = scatter(X[1,:], X[2,:], label="in")
    scatter!(p, Y[1,:], Y[2,:], label="out")
    X = circle()
    Y = A * X
    q = scatter(X[1,:], X[2,:], label="in")
    scatter!(q, Y[1,:], Y[2,:], label="out")
    plot(p, q, layout=2, aspect_ratio=:equal)
end
Aplot (generic function with 1 method)

1. Reflection on algorithm choices#

Recap on Condition number via SVD#

\[\begin{split} U \overbrace{\begin{bmatrix} \sigma_{\max} && \\ & \ddots & \\ && \sigma_{\min} \end{bmatrix}}^{\Sigma} V^T = A \end{split}\]
(8)#\[\begin{align} \lVert A \rVert &= \sigma_{\max} & \textrm{, and } \; \kappa(A) &= \frac{\sigma_{\max}}{\sigma_{\min}} = \texttt{cond}(A) \end{align}\]
A = randn(2,2) # nonsymmetric
A = A + A' # make it symmetric
2×2 Matrix{Float64}:
 1.94196    0.937797
 0.937797  -1.03437
@show svdvals(A) # Julia built-in
U, S, V = svd(A) # Julia built-in
@show U - U' # U is symmetric
Aplot(A)
svdvals(A) = [2.2128001268646975, 1.3052093673307865]
U - U' = 
[0.0 0.0; 0.0 0.0]

Real-world example: autonomous vehicles#

  • Need to solve least squares problems in real time

  • Weight/cost/size increase with compute

  • What algorithm to choose?

  • What precision to use?

Factors to consider:

  • How many objects?

  • Speed (of robot and objects)

  • Aerial, wheeled, walking

  • Fog, light – longer memory?

  • Tolerences (how accurate does the solution need to be?)

  • Consequences of being wrong, who bears those consequences?

A = rand(5000, 500)
A_32 = Float32.(A)
@show cond(A)
@time qr(A);       # Householder; backward stable
@time qr_chol(A);  # Unstable
@time qr(A_32);    # Julia built-in; best in terms of memory allocations; Run twice!
cond(A) = 56.24692410056267
  0.078043 seconds (20.78 k allocations: 20.649 MiB, 25.59% compilation time)
  0.555163 seconds (790.06 k allocations: 76.448 MiB, 3.66% gc time, 91.29% compilation time)
  0.098542 seconds (56.96 k allocations: 13.393 MiB, 46.42% compilation time)
V = vander(LinRange(-1, 1, 20))
@show cond(V)
Q, R = qr(Float32.(V)) # Julia built-in, but with single-precision Floats
@show norm(Q' * Q - I)
Q, R = qr_chol(V) # Unstable; really not orthogonal
@show norm(Q' * Q - I)
cond(V) = 2.7224082312417406e8
norm(Q' * Q - I) = 
1.6641898f-6
norm(Q' * Q - I) = 0.1749736012761826
0.1749736012761826

2. Low-rank structure#

Best low rank approximation#

The SVD can be truncated to yield the best rank-\(k\) approximation of a matrix.

n, k = 2, 1
A = randn(n, n)
Aplot(A)
@show U, S, V = svd(A)
(U, S, V) = svd(A) = SVD{Float64, Float64, Matrix{Float64}, Vector{Float64}}([-0.7707367195355678 0.6371537562939981; 0.6371537562939981 0.7707367195355677], [1.5796579122907455, 0.23586033139977886], [0.4752532682751691 0.8798490387525408; 0.8798490387525408 -0.4752532682751691])
SVD{Float64, Float64, Matrix{Float64}, Vector{Float64}}
U factor:
2×2 Matrix{Float64}:
 -0.770737  0.637154
  0.637154  0.770737
singular values:
2-element Vector{Float64}:
 1.5796579122907455
 0.23586033139977886
Vt factor:
2×2 Matrix{Float64}:
 0.475253   0.879849
 0.879849  -0.475253
@show Uhat = U[:, 1:k] # Uhat is now 2x1
@show Shat = S[1:k] # truncate to first k singular values, in this case 1
@show Vhat = V[:, 1:k] # Vhat is now 2x1
@show Ahat = Uhat * diagm(Shat) * Vhat'
@show norm(Ahat)
Aplot(Ahat - A) # we have squished every point onto a line
Uhat = U[:, 1:k] = [-0.7707367195355678; 0.6371537562939981;;]
Shat = S[1:k] = [1.5796579122907455]
Vhat = V[:, 1:k] = [0.4752532682751691; 0.8798490387525408;;]
Ahat = Uhat * diagm(Shat) * Vhat' = 
[-0.5786210239365152 -1.071216519057767; 0.4783352726388646 0.8855548355515195]
norm(Ahat) = 1.5796579122907453

Example: Galaxies#

Suppose we have two galaxies of size \(n_1 = 100\) and \(n_2 = 200\), each randomly distributed around their respective centers.

galaxy(center, sigma, n) = reshape(center, 1, 3) .+ sigma*randn(n, 3)
g1 = galaxy([0 0 0], 1, 100)
g2 = galaxy([10 0 0], 1, 100)

scatter(g1[:,1], g1[:,2], aspect_ratio=:equal)
scatter!(g2[:,1], g2[:,2])

Forces between stars#

Consider Newton’s law of universal gravitation between two bodies with spatial extent (i.e., not point masses), then we can write the gravitational force from a star at position \(x_2\) acting on a star at position \(x_1\),

\[ F_{1,2} = G \frac{m_1 m_2}{\lVert \mathbf{x}_2 - \mathbf{x}_1 \rVert^3} (\mathbf{x}_2 - \mathbf{x}_1) \]
where \(m_1\) and \(m_2\) are the masses of each star, respectively.

function gravitational_force(g1, g2)
    m = size(g1, 1)
    n = size(g2, 1)
    F = zeros(3*m, n)
    for i in 0:m-1
        for j in 1:n
            r = g2[j,:] - g1[1+i,:]
            F[1+3*i:3*(i+1),j] = r / norm(r)^3
        end
    end
    F
end

# Let's apply it to our two galaxies
gravitational_force(g1, g2)
300×100 Matrix{Float64}:
  0.00779732    0.00598369    0.0055781    …   0.00606115    0.00702459
 -2.33319e-5    0.000585375  -5.20352e-5       0.000735937   0.000317306
 -0.000329506   0.000157679  -0.000602207     -0.00048417   -0.00070004
  0.0123498     0.00845431    0.00851145       0.00904661    0.0111406
  0.000542236   0.0013661     0.000235249      0.00173673    0.00113673
  0.00165815    0.0016333     0.000185053  …   0.000583738   0.000581704
  0.0120206     0.00882434    0.00780622       0.00850269    0.0101807
  0.000546239   0.00143767    0.000225543      0.00164393    0.00105369
 -0.00230512   -0.000751094  -0.00191406      -0.00186066   -0.00260529
  0.0169918     0.0109691     0.0108046        0.0114855     0.0146648
  0.00122855    0.00220795    0.00051977   …   0.00271882    0.00201674
  0.00101539    0.00152574   -0.000563136     -9.8384e-5    -0.000441728
  0.00876278    0.00632551    0.00621327       0.00633521    0.00765724
  ⋮                                        ⋱                
  0.00925116    0.00729166    0.00641937       0.00740612    0.00840886
 -0.00140195   -0.000158721  -0.000863168      1.63836e-5   -0.000766602
 -0.000633065   7.40801e-5   -0.000872881  …  -0.000790136  -0.00109811
  0.0113108     0.00834224    0.0074734        0.00818074    0.00974111
  0.000247049   0.0011543     7.47429e-5       0.00136811    0.000767714
 -0.00162444   -0.000397471  -0.00152163      -0.00143779   -0.00202345
  0.00771857    0.00576913    0.00574163       0.00614775    0.00718699
 -2.44457e-5    0.000568106  -5.46935e-5   …   0.000751643   0.000326419
  0.00111072    0.00110094    0.000286817      0.00052969    0.000559298
  0.0107101     0.00763113    0.00746111       0.00803095    0.0096708
  0.000191761   0.00100158    5.29373e-5       0.00127741    0.000706712
  0.00088057    0.00110119   -0.000106163      0.000189357   8.56869e-5

Spectrum#

g1 = galaxy([0 0 0], 1, 500)
g2 = galaxy([10 0 0], 1, 500)
F = gravitational_force(g1, g2)
@show size(F)
U, S, V = svd(F) # U is 1500 x 500, S is 500 long, and V is 500 x 500
scatter(S, yscale=:log10, ylims=(1e-10, 10), xlims=(0, 200))
size(F) = (1500, 500)
k = 10 # let's truncate at the first 10 singular values
Uhat = U[:,1:k]   # Uhat is now 1500 x 10
Shat = S[1:k]     # Shat is now 10 long
Vhat = V[:,1:k]   # Vhat is now 500 x 10
Fhat = Uhat * diagm(Shat) * Vhat' # Fhat is still 1500 x 500
@show norm(F)
@show norm(F - Fhat) # Fhat is the best rank-10 approximation of F and it is not too far off from F indeed
norm(F) = 5.309830732097176
norm(F - Fhat) = 0.00482056930385322
0.00482056930385322