40) CFD examples#

Today#

  1. Computational Fluid Dynamics Examples

  2. Conservation

  3. Hamiltonians

  4. Symplectic integrators

using Plots
default(linewidth=3)
using LinearAlgebra
using LaTeXStrings
using SparseArrays

function plot_stability(Rz, title; xlims=(-2, 2), ylims=(-2, 2))
    x = LinRange(xlims[1], xlims[2], 100)
    y = LinRange(ylims[1], ylims[2], 100)
    heatmap(x, y, (x, y) -> abs(Rz(x + 1im*y)), c=:bwr, clims=(0, 2), aspect_ratio=:equal, title=title)
end

struct RKTable
    A::Matrix
    b::Vector
    c::Vector
    function RKTable(A, b)
        s = length(b)
        A = reshape(A, s, s)
        c = vec(sum(A, dims=2))
        new(A, b, c)
    end
end

function rk_stability(z, rk)
    s = length(rk.b)
    1 + z * rk.b' * ((I - z*rk.A) \ ones(s))
end

rk4 = RKTable([0 0 0 0; .5 0 0 0; 0 .5 0 0; 0 0 1 0], [1, 2, 2, 1] / 6)

function ode_rk_explicit(f, u0; tfinal=1., h=0.1, table=rk4)
    u = copy(u0)
    t = 0.
    n, s = length(u), length(table.c)
    fY = zeros(n, s)
    thist = [t]
    uhist = [u0]
    while t < tfinal
        tnext = min(t+h, tfinal)
        h = tnext - t
        for i in 1:s
            ti = t + h * table.c[i]
            Yi = u + h * sum(fY[:,1:i-1] * table.A[i,1:i-1], dims=2)
            fY[:,i] = f(ti, Yi)
        end
        u += h * fY * table.b
        t = tnext
        push!(thist, t)
        push!(uhist, u)
    end
    thist, hcat(uhist...)
end
ode_rk_explicit (generic function with 1 method)

1. Computational Fluid Dynamics (CFD) examples#

Gas equations of state#

There are many ways to describe a gas

Name

variable

units

pressure

\(p\)

force/area

density

\(\rho\)

mass/volume

temperature

\(T\)

Kelvin

(specific) internal energy

\(e\)

[energy]/mass

entropy

\(s\)

[energy]/Kelvin

Equation of state#

\[ \rho, e \mapsto p, T \]

Ideal gas#

(22)#\[\begin{align} p &= \rho R T & e &= e(T) \end{align}\]
\[ p = (\gamma - 1) \rho e \]
pressure(rho, T) = rho*T
contour(LinRange(0, 2, 30), LinRange(0, 2, 30), pressure, xlabel="\$\\rho\$", ylabel="\$T\$")
temperature(rho, pressure) = pressure / rho
contour(LinRange(0, 2, 30), LinRange(0, 2, 30), temperature, xlabel="\$\\rho\$", ylabel="\$p\$")

Conservation equations#

Conservation of mass#

Let \(\mathbf u\) be the fluid velocity. The mass flux (mass/time) moving through an area \(A\) is

\[ \int_A \rho \mathbf u \cdot \hat{\mathbf n} .\]

If mass is conserved in a volume \(V\) with surface \(A\), then the total mass inside the volume must evolve as

\[ \int_V \rho_t = \left( \int_V \rho \right)_t = - \underbrace{\int_A \rho\mathbf u \cdot \hat{\mathbf n}}_{\int_V \nabla\cdot (\rho\mathbf u)},\]

where we have applied Gauss’ divergence theorem.

Dropping the integrals over arbitrary volumes, we have the evolution equation for conservation of mass:

\[ \rho_t + \nabla\cdot (\rho \mathbf u) = 0, \]

also called the continuity equation.

Conservation of linear momentum#

The momentum \(\rho \mathbf u\) has a flux that includes

  • convection \(\rho \mathbf u \otimes \mathbf u\)

    • this is saying that each component of momentum is carried along in the vector velocity field

  • pressure \(p I\)

  • stress tensor \(-\boldsymbol\tau\) due to viscosity (internal friction forces)

A similar integral principle leads to the momentum equation

\[ (\rho \mathbf u)_t + \nabla\cdot\big[ \rho \mathbf u \otimes \mathbf u + p I - \boldsymbol \tau \big] = 0 \]

Simplifications#

  • In the case of inviscid fluids (e.g, water, air) we ignore the viscous stress tensor \(\boldsymbol \tau\)

  • Ignore energy equation (not yet written) and assume constant temperature

    • \(p = a^2 \rho\) where \(a\) is the acoustic wave speed

\[\begin{split}\begin{pmatrix} \rho \\ \rho \mathbf u \end{pmatrix}_t + \nabla\cdot \begin{bmatrix} \rho \mathbf u \\ \rho \mathbf u \otimes \mathbf u + \rho a^2 I \end{bmatrix} = 0 \end{split}\]

Linearization#

Split each state variable into a mean state (denoted by bar) and a small fluctuation (denoted by tilde)

  • \(\rho = \bar\rho + \tilde\rho\)

  • \(u = \bar u + \tilde u\)

Let \(\widetilde{\rho u} = (\bar\rho + \tilde\rho) (\bar u + \tilde u) - \bar\rho\bar u \approx \tilde \rho \bar u + \bar\rho \tilde u\), where we have dropped the second order term \(\tilde \rho\tilde u\) because both are assumed small.

We consider background state \(\bar u = 0\) and constant \(\bar\rho(x,y,t) = \bar\rho\). Then

\[\begin{split}\begin{pmatrix} \tilde \rho \\ \bar\rho \mathbf{\tilde u} \end{pmatrix}_t + \nabla\cdot \begin{bmatrix} \bar\rho \mathbf{\tilde u} \\ \tilde \rho a^2 I \end{bmatrix} = 0 \end{split}\]

Two forms of acoustic wave equation#

Divide the momentum equation through by background density and dropping the tildes yields the standard form.

\[\begin{split}\begin{pmatrix} \rho \\ \mathbf u \end{pmatrix}_t + \nabla\cdot \begin{bmatrix} \bar\rho \mathbf u \\ \rho \frac{a^2}{\bar\rho} I \end{bmatrix} = 0 .\end{split}\]

Let’s examine the second equation term:

\[ \frac{a^2}{\bar\rho} \nabla\cdot\big[ \rho I \big] = \frac{a^2}{\bar\rho} \nabla \rho \]

and thus

\[\begin{split} \begin{pmatrix} \rho \\ \mathbf u \end{pmatrix}_t + \begin{bmatrix} & \bar\rho \nabla\cdot \\ \frac{a^2}{\bar\rho} \nabla & \\ \end{bmatrix} \begin{pmatrix} \rho \\ \mathbf u \end{pmatrix} = 0. \end{split}\]

Let’s differentiate the first equation in time,

\[ \rho_{tt} + \bar\rho\nabla\cdot(\mathbf u_t) = 0\]

and substitute in the second equation

\[ \rho_{tt} = a^2 \nabla\cdot(\nabla \rho).\]
  • Note: we had to assume these derivatives exist!

Any \(n\)-th order linear ODE can be rewritten as \(n\) first-order ODEs. Hence, we can reduce this to a system of two first-order equations as

\[\begin{split}\begin{pmatrix} \rho \\ \dot \rho \end{pmatrix}_t + \begin{bmatrix} & -I \\ -a^2 \nabla\cdot\nabla & \end{bmatrix} \begin{pmatrix} \rho \\ \dot\rho \end{pmatrix} = 0\end{split}\]

Question#

  • How is the problem size different?

  • What might we be concerned about in choosing the second formulation?

Example: Laplacian in a periodic domain#

function laplacian_matrix(n)
    h = 2 / n
    rows = Vector{Int64}()
    cols = Vector{Int64}()
    vals = Vector{Float64}()
    wrap(i) = (i + n - 1) % n + 1
    idx(i, j) = (wrap(i)-1)*n + wrap(j)
    stencil_diffuse = [-1, -1, 4, -1, -1] / h^2 # centered diff on uniform grid
    for i in 1:n
        for j in 1:n
            append!(rows, repeat([idx(i,j)], 5))
            append!(cols, [idx(i-1,j), idx(i,j-1), idx(i,j), idx(i+1,j), idx(i,j+1)])
            append!(vals, stencil_diffuse)
        end
    end
    sparse(rows, cols, vals)
end
cond(Matrix(laplacian_matrix(5)))
2.9959163385932148e16
L = laplacian_matrix(10)
ev = eigvals(Matrix(L))
scatter(real(ev), imag(ev), label = "eigenvalues", xlims = (-50, 200), ylims = (-50, 200))

The wave operator#

Let’s focus on the second equation in the system, a wave equation:

\[\begin{split}\begin{pmatrix} \rho \\ \dot \rho \end{pmatrix}_t = \begin{bmatrix} & I \\ a^2 \nabla\cdot\nabla & \end{bmatrix} \begin{pmatrix} \rho \\ \dot\rho \end{pmatrix}\end{split}\]
function acoustic_wave_matrix(n; a=1)
    Z = spzeros(n^2, n^2)
    L = laplacian_matrix(n)
    [Z I; -a^2*L Z]
end
acoustic_wave_matrix(2)
8×8 SparseMatrixCSC{Float64, Int64} with 16 stored entries:
   ⋅     ⋅     ⋅     ⋅   1.0   ⋅    ⋅    ⋅ 
   ⋅     ⋅     ⋅     ⋅    ⋅   1.0   ⋅    ⋅ 
   ⋅     ⋅     ⋅     ⋅    ⋅    ⋅   1.0   ⋅ 
   ⋅     ⋅     ⋅     ⋅    ⋅    ⋅    ⋅   1.0
 -4.0   2.0   2.0    ⋅    ⋅    ⋅    ⋅    ⋅ 
  2.0  -4.0    ⋅    2.0   ⋅    ⋅    ⋅    ⋅ 
  2.0    ⋅   -4.0   2.0   ⋅    ⋅    ⋅    ⋅ 
   ⋅    2.0   2.0  -4.0   ⋅    ⋅    ⋅    ⋅ 
A = acoustic_wave_matrix(8; a=2) * .1
ev = eigvals(Matrix(A))
plot_stability(z -> rk_stability(z, rk4), "RK4", xlims=(-4, 4), ylims=(-4, 4))
scatter!(real(ev), imag(ev), color=:black, label = "eigenvalues", xlims=(-4, 4), ylims=(-4, 4), xlabel = L"Re(z)", ylabel = L"Im(z)")

Question: would forward Euler work?#

Example: 2D wave solver with RK4#

n = 20
A = acoustic_wave_matrix(n)
x = LinRange(-1, 1, n+1)[1:end-1]
y = x
rho0 = vec(exp.(-9*((x .+ 1e-4).^2 .+ y'.^2)))
sol0 = vcat(rho0, zero(rho0))
thist, solhist = ode_rk_explicit((t, sol) -> A * sol, sol0, h=.02)
size(solhist)
(800, 51)
@gif for tstep in 1:length(thist)
    rho = solhist[1:n^2, tstep]
    contour(x, y, reshape(rho, n, n), title="\$ t = $(thist[tstep])\$")
end
[ Info: Saved animation to /home/valeria/Dropbox/SDSU/Teaching/Comp526/fall24/slides/tmp.gif

2. Conservation#

Accuracy and conservation of mass with RK4#

thist, solhist = ode_rk_explicit((t, sol) -> A * sol, sol0, h=.05,
    tfinal=1)

tfinal = thist[end]
M = exp(Matrix(A*tfinal))
sol_exact = M * sol0
sol_final = solhist[:, end]
norm(sol_final - sol_exact)
0.02015111748435498
mass = vec(sum(solhist[1:n^2, :], dims=1))
plot(thist[2:end], mass[2:end] .- mass[1], label = "mass conservation", xlabel = "t", ylabel = L"mass_{t_f} - mass_{t_0}")

Let’s analyze the conservation of energy with RK4.

3. Hamiltonians#

We can express the total energy for our system as a sum of kinetic and potential energy:

\[H(\rho, \dot\rho) = \underbrace{\frac 1 2 \int_\Omega (\dot\rho)^2}_{\text{kinetic}} + \underbrace{\frac{a^2}{2} \int_\Omega \lVert \nabla \rho \rVert^2}_{\text{potential}}\]

where we identify \(\rho\) as a generalized position and \(\dot\rho\) as generalized momentum. Hamilton’s equations state that the equations of motion are

\[\begin{split} \begin{pmatrix} \rho \\ \dot\rho \end{pmatrix}_t = \begin{bmatrix} \frac{\partial H}{\partial \dot\rho} \\ -\frac{\partial H}{\partial \rho} \end{bmatrix} = \begin{bmatrix} \dot\rho \\ - a^2 L \rho \end{bmatrix} \end{split}\]

where we have used the weak form to associate \(\int \nabla v \cdot \nabla u = v^T L u\).

function energy(sol, n)
    L = laplacian_matrix(n)
    rho = sol[1:end÷2]
    rhodot = sol[end÷2+1:end]
    kinetic = .5 * norm(rhodot)^2
    potential = .5 * rho' * L * rho
    kinetic + potential
end
ehist = [energy(solhist[:,i], n) for i in 1:length(thist)]
plot(thist, ehist, xlabel = "t", ylabel = "e", label = "e")

Velocity Verlet integrator#

function wave_verlet(n, u0; tfinal=1., h=0.1)
    L = laplacian_matrix(n)
    u = copy(u0)
    t = 0.
    thist = [t]
    uhist = [u0]
    irho = 1:n^2
    irhodot = n^2+1:2*n^2
    accel = -L * u[irho]
    while t < tfinal
        tnext = min(t+h, tfinal)
        h = tnext - t
        u[irho] += h * u[irhodot] + h^2/2 * accel
        accel_next = -L * u[irho]
        u[irhodot] += h/2 * (accel + accel_next)
        accel = accel_next
        t = tnext
        push!(thist, t)
        push!(uhist, copy(u))
    end
    thist, hcat(uhist...)
end
wave_verlet (generic function with 1 method)
thist, solhist = wave_verlet(n, sol0, h=.04)
@gif for tstep in 1:length(thist)
    rho = solhist[1:n^2, tstep]
    contour(x, y, reshape(rho, n, n), title="\$ t = $(thist[tstep])\$")
end
[ Info: Saved animation to /home/valeria/Dropbox/SDSU/Teaching/Comp526/fall24/slides/tmp.gif

Accuracy and conservation for Verlet#

thist, solhist = wave_verlet(n, sol0, h=.05, tfinal=50)
tfinal = thist[end]
M = exp(Matrix(A*tfinal))
sol_exact = M * sol0
sol_final = solhist[:, end]
@show norm(sol_final - sol_exact)

mass = vec(sum(solhist[1:n^2, :], dims=1))
plot(thist[2:end], mass[2:end] .- mass[1], label = "mass conservation", xlabel = "t", ylabel = L"mass_{t_f} - mass_{t_0}")
norm(sol_final - sol_exact) = 6.862500992527711
ehist = [energy(solhist[:,i], n) for i in 1:length(thist)]
plot(thist, ehist, xlabel = "t", ylabel = "e", label = "e")

Notes on time integrators#

  • We need stability on the imaginary axis for our discretization (and the physical system)

  • If the model is dissipative (e.g., we didn’t make the zero-viscosity assumption), then we need stability in the left half plane.

  • The split form \(\rho, \rho\mathbf u\) form is usually used with (nonlinear) upwinding, and thus will have dissipation.

Runge-Kutta methods#

  • Easy to use, stability region designed for spatial discretization

  • Energy drift generally present

Verlet/leapfrog/Newmark and symplectic integrators#

  • These preserve the “geometry of the Hamiltonian”

    • energy is not exactly conserved, but it doesn’t drift over time

    • such methods are called “symplectic integrators”

  • May not have stability away from the imaginary axis (for dissipation)

  • Most require a generalized position/momentum split, “canonical variables”