21) Low Rank#

Last time#

  • Condition number and SVD

  • SVD for solving systems

  • Costs of decompositions

Today#

  1. Reflection on algorithm choices

  2. Low-rank structure

  3. Primer on interpolation

using LinearAlgebra
using Plots
default(linewidth=4, legendfontsize=12)

function vander(x, k=nothing)
    if isnothing(k)
        k = length(x)
    end
    m = length(x)
    V = ones(m, k)
    for j in 2:k
        V[:, j] = V[:, j-1] .* x
    end
    V
end

function gram_schmidt_classical(A)
    m, n = size(A)
    Q = zeros(m, n)
    R = zeros(n, n)
    for j in 1:n
        v = A[:,j]
        R[1:j-1,j] = Q[:,1:j-1]' * v
        v -= Q[:,1:j-1] * R[1:j-1,j]
        R[j,j] = norm(v)
        Q[:,j] = v / R[j,j]
    end
    Q, R
end

function qr_householder(A)
    m, n = size(A)
    R = copy(A)
    V = [] # list of reflectors
    for j in 1:n
        v = copy(R[j:end, j])
        v[1] += sign(v[1]) * norm(v) # <--- here we pick the sign of v so that moves it the largest distance
        v = normalize(v)
        R[j:end,j:end] -= 2 * v * v' * R[j:end,j:end]
        push!(V, v)
    end
    V, R
end

function qr_chol(A)
    R = cholesky(A' * A).U
    Q = A / R
    Q, R
end

function qr_chol2(A)
    Q, R = qr_chol(A)
    Q, R1 = qr_chol(Q)
    Q, R1 * R
end

function peanut()
    theta = LinRange(0, 2*pi, 50)
    r = 1 .+ .4*sin.(3*theta) + .6*sin.(2*theta)
    r' .* [cos.(theta) sin.(theta)]'
end

function circle()
    theta = LinRange(0, 2*pi, 50)
    [cos.(theta) sin.(theta)]'
end

function Aplot(A)
    "Plot a transformation from X to Y"
    X = peanut()
    Y = A * X
    p = scatter(X[1,:], X[2,:], label="in")
    scatter!(p, Y[1,:], Y[2,:], label="out")
    X = circle()
    Y = A * X
    q = scatter(X[1,:], X[2,:], label="in")
    scatter!(q, Y[1,:], Y[2,:], label="out")
    plot(p, q, layout=2, aspect_ratio=:equal)
end
Aplot (generic function with 1 method)

1. Reflection on algorithm choices#

Recap on Condition number via SVD#

\[\begin{split} U \overbrace{\begin{bmatrix} \sigma_{\max} && \\ & \ddots & \\ && \sigma_{\min} \end{bmatrix}}^{\Sigma} V^T = A \end{split}\]
(8)#\[\begin{align} \lVert A \rVert &= \sigma_{\max} & \textrm{, and } \; \kappa(A) &= \frac{\sigma_{\max}}{\sigma_{\min}} = \texttt{cond}(A) \end{align}\]
A = randn(2,2) # nonsymmetric
A = A + A' # make it symmetric
2×2 Matrix{Float64}:
  1.77458   -0.293769
 -0.293769   0.0297292
@show svdvals(A) # Julia built-in
U, S, V = svd(A) # Julia built-in
@show U - U' # U is symmetric
Aplot(A)
svdvals(A) = [1.8227160219614589, 0.018403077457637293]
U - U' = 
[0.0 -2.7755575615628914e-17; 2.7755575615628914e-17 0.0]

Real-world example: autonomous vehicles#

  • Need to solve least squares problems in real time

  • Weight/cost/size increase with compute

  • What algorithm to choose?

  • What precision to use?

Factors to consider:

  • How many objects?

  • Speed (of robot and objects)

  • Aerial, wheeled, walking

  • Fog, light – longer memory?

  • Tolerences (how accurate does the solution need to be?)

  • Consequences of being wrong, who bears those consequences?

A = rand(5000, 500)
A_32 = Float32.(A)
@show cond(A)
@time qr(A);       # Householder; backward stable
@time qr_chol(A);  # Unstable
@time qr(A_32);    # Julia built-in; best in terms of memory allocations; Run twice!
cond(A) = 56.57956085979877
  0.091929 seconds (20.78 k allocations: 20.649 MiB, 7.00% gc time, 16.07% compilation time)
  0.281116 seconds (748.90 k allocations: 73.596 MiB, 8.64% gc time, 87.07% compilation time)
  0.276054 seconds (56.96 k allocations: 13.407 MiB, 50.88% gc time, 12.04% compilation time)
V = vander(LinRange(-1, 1, 20))
@show cond(V)
Q, R = qr(Float32.(V)) # Julia built-in, but with single-precision Floats
@show norm(Q' * Q - I)
Q, R = qr_chol(V) # Unstable; really not orthogonal
@show norm(Q' * Q - I)
cond(V) = 2.7224082312417406e8
norm(Q' * Q - I) = 
1.6641898f-6
norm(Q' * Q - I) = 0.1749736012761826
0.1749736012761826

2. Low-rank structure#

Best low rank approximation#

The SVD can be truncated to yield the best rank-\(k\) approximation of a matrix.

n, k = 2, 1
A = randn(n, n)
Aplot(A)
@show U, S, V = svd(A)
(U, S, V) = svd(A) = SVD{Float64, Float64, Matrix{Float64}, Vector{Float64}}([-0.47870606451107356 0.8779752296052096; 0.8779752296052096 0.47870606451107345], [1.8757788549148868, 0.12067438349951641], [0.8576906491355568 -0.5141660727677657; 0.5141660727677657 0.8576906491355568])
SVD{Float64, Float64, Matrix{Float64}, Vector{Float64}}
U factor:
2×2 Matrix{Float64}:
 -0.478706  0.877975
  0.877975  0.478706
singular values:
2-element Vector{Float64}:
 1.8757788549148868
 0.12067438349951641
Vt factor:
2×2 Matrix{Float64}:
 0.857691  -0.514166
 0.514166   0.857691
@show Uhat = U[:, 1:k] # Uhat is now 2x1
@show Shat = S[1:k] # truncate to first k singular values, in this case 1
@show Vhat = V[:, 1:k] # Vhat is now 2x1
@show Ahat = Uhat * diagm(Shat) * Vhat'
@show norm(Ahat)
Aplot(Ahat - A) # we have squished every point onto a line
Uhat = U[:, 1:k] = [-0.47870606451107356; 0.8779752296052096;;]
Shat = S[1:k] = [1.8757788549148868]
Vhat = V[:, 1:k] = [0.8576906491355568; -0.5141660727677657;;]
Ahat = Uhat * diagm(Shat) * Vhat' = [-0.7701604996161654 0.4616937352501302; 1.4125198981424731 -0.8467736117517749]
norm(Ahat) = 1.8757788549148877

Example: Galaxies#

Suppose we have two galaxies of size \(n_1 = 100\) and \(n_2 = 200\), each randomly distributed around their respective centers.

galaxy(center, sigma, n) = reshape(center, 1, 3) .+ sigma*randn(n, 3)
g1 = galaxy([0 0 0], 1, 100)
g2 = galaxy([10 0 0], 1, 100)

scatter(g1[:,1], g1[:,2], aspect_ratio=:equal)
scatter!(g2[:,1], g2[:,2])

Forces between stars#

Consider Newton’s law of universal gravitation between two bodies with spatial extent (i.e., not point masses), then we can write the gravitational force from a star at position \(x_2\) acting on a star at position \(x_1\),

\[ F_{1,2} = G \frac{m_1 m_2}{\lVert \mathbf{x}_2 - \mathbf{x}_1 \rVert^3} (\mathbf{x}_2 - \mathbf{x}_1) \]
where \(m_1\) and \(m_2\) are the masses of each star, respectively.

function gravitational_force(g1, g2)
    m = size(g1, 1)
    n = size(g2, 1)
    F = zeros(3*m, n)
    for i in 0:m-1
        for j in 1:n
            r = g2[j,:] - g1[1+i,:]
            F[1+3*i:3*(i+1),j] = r / norm(r)^3
        end
    end
    F
end

# Let's apply it to our two galaxies
gravitational_force(g1, g2)
300×100 Matrix{Float64}:
  0.0104259     0.0150896     0.00809692   …   0.0103273     0.0113001
  0.000374816  -0.000139851   0.000601325      0.000282173  -0.000193855
 -0.00236521   -0.00691677   -0.000592256     -0.000829134  -0.000141851
  0.00995598    0.0173012     0.00705352       0.0088178     0.00908384
  0.000680328   0.000629145   0.000708303      0.000520267   0.000164425
  0.000717091  -0.000866648   0.00125079   …   0.0017686     0.00250321
  0.00939907    0.0172575     0.00641756       0.00779966    0.00770018
  0.000760255   0.000894178   0.000718442      0.000552615   0.000225544
  0.00268441    0.00393771    0.00233023       0.00319644    0.00381307
  0.0127977     0.0248749     0.00854716       0.010859      0.0109872
  0.000695526   0.000271012   0.000790334  …   0.000481064  -3.39784e-5
  0.00168555    0.000198254   0.00205494       0.00299105    0.00400438
  0.0104549     0.0179927     0.00744119       0.00923621    0.00940944
  ⋮                                        ⋱                
  0.00912179    0.0155053     0.00653848       0.00800563    0.00811096
 -0.000105633  -0.00101553    0.000196483     -0.000142754  -0.00048588
  0.00101799    0.000118701   0.00135925   …   0.00187113    0.0024891
  0.00769977    0.0126248     0.00562202       0.00688829    0.00710804
  0.00101249    0.00152705    0.000857893      0.000834576   0.000617544
  0.00075603    8.59404e-7    0.00106892       0.00146226    0.00198641
  0.0086289     0.013894      0.00637882       0.00778118    0.00796141
 -0.000444365  -0.00158955   -3.76035e-5   …  -0.000437582  -0.000782425
  0.000350424  -0.00109739    0.000914164      0.00125376    0.00182505
  0.0111115     0.0204468     0.00761576       0.00938789    0.00932516
 -0.000450175  -0.00231049    7.32083e-5      -0.000435491  -0.000882865
  0.00192783    0.00151591    0.00205979       0.00288493    0.00365784

Spectrum#

g1 = galaxy([0 0 0], 1, 500)
g2 = galaxy([10 0 0], 1, 500)
F = gravitational_force(g1, g2)
@show size(F)
U, S, V = svd(F) # U is 1500 x 500, S is 500 long, and V is 500 x 500
scatter(S, yscale=:log10, ylims=(1e-10, 10), xlims=(0, 200))
size(F) = (1500, 500)
k = 10 # let's truncate at the first 10 singular values
Uhat = U[:,1:k]   # Uhat is now 1500 x 10
Shat = S[1:k]     # Shat is now 10 long
Vhat = V[:,1:k]   # Vhat is now 500 x 10
Fhat = Uhat * diagm(Shat) * Vhat' # Fhat is still 1500 x 500
@show norm(F)
@show norm(F - Fhat) # Fhat is the best rank-10 approximation of F and it is not too far off from F indeed
norm(F) = 5.379612303943579
norm(F - Fhat) = 0.004660806587794126
0.004660806587794126