22) Low Rank#

Last time#

  • Condition number and SVD

  • SVD for solving systems

  • Costs of decompositions

Today#

  1. Reflection on algorithm choices

  2. Low-rank structure

  3. Primer on interpolation

using LinearAlgebra
using Plots
default(linewidth=4, legendfontsize=12)

function vander(x, k=nothing)
    if isnothing(k)
        k = length(x)
    end
    m = length(x)
    V = ones(m, k)
    for j in 2:k
        V[:, j] = V[:, j-1] .* x
    end
    V
end

function gram_schmidt_classical(A)
    m, n = size(A)
    Q = zeros(m, n)
    R = zeros(n, n)
    for j in 1:n
        v = A[:,j]
        R[1:j-1,j] = Q[:,1:j-1]' * v
        v -= Q[:,1:j-1] * R[1:j-1,j]
        R[j,j] = norm(v)
        Q[:,j] = v / R[j,j]
    end
    Q, R
end

function qr_householder(A)
    m, n = size(A)
    R = copy(A)
    V = [] # list of reflectors
    for j in 1:n
        v = copy(R[j:end, j])
        v[1] += sign(v[1]) * norm(v) # <--- here we pick the sign of v so that moves it the largest distance
        v = normalize(v)
        R[j:end,j:end] -= 2 * v * v' * R[j:end,j:end]
        push!(V, v)
    end
    V, R
end

function qr_chol(A)
    R = cholesky(A' * A).U
    Q = A / R
    Q, R
end

function qr_chol2(A)
    Q, R = qr_chol(A)
    Q, R1 = qr_chol(Q)
    Q, R1 * R
end

function peanut()
    theta = LinRange(0, 2*pi, 50)
    r = 1 .+ .4*sin.(3*theta) + .6*sin.(2*theta)
    r' .* [cos.(theta) sin.(theta)]'
end

function circle()
    theta = LinRange(0, 2*pi, 50)
    [cos.(theta) sin.(theta)]'
end

function Aplot(A)
    "Plot a transformation from X to Y"
    X = peanut()
    Y = A * X
    p = scatter(X[1,:], X[2,:], label="in")
    scatter!(p, Y[1,:], Y[2,:], label="out")
    X = circle()
    Y = A * X
    q = scatter(X[1,:], X[2,:], label="in")
    scatter!(q, Y[1,:], Y[2,:], label="out")
    plot(p, q, layout=2, aspect_ratio=:equal)
end
Aplot (generic function with 1 method)

1. Reflection on algorithm choices#

Recap on Condition number via SVD#

\[\begin{split} U \overbrace{\begin{bmatrix} \sigma_{\max} && \\ & \ddots & \\ && \sigma_{\min} \end{bmatrix}}^{\Sigma} V^T = A \end{split}\]
(8)#\[\begin{align} \lVert A \rVert &= \sigma_{\max} & \textrm{, and } \; \kappa(A) &= \frac{\sigma_{\max}}{\sigma_{\min}} = \texttt{cond}(A) \end{align}\]
A = randn(2,2) # nonsymmetric
A = A + A' # make it symmetric
2×2 Matrix{Float64}:
 -1.31938    -0.0909455
 -0.0909455  -2.10179
@show svdvals(A) # Julia built-in
U, S, V = svd(A) # Julia built-in
@show U - U' # U is symmetric
Aplot(A)
svdvals(A) = [2.112222153284016, 1.308949301207618]
U - U' = 
[0.0 -2.220446049250313e-16; 2.220446049250313e-16 0.0]

Real-world example: autonomous vehicles#

  • Need to solve least squares problems in real time

  • Weight/cost/size increase with compute

  • What algorithm to choose?

  • What precision to use?

Factors to consider:

  • How many objects?

  • Speed (of robot and objects)

  • Aerial, wheeled, walking

  • Fog, light – longer memory?

  • Tolerences (how accurate does the solution need to be?)

  • Consequences of being wrong, who bears those consequences?

A = rand(5000, 500)
A_32 = Float32.(A)
@show cond(A)
@time qr(A);       # Householder; backward stable
@time qr_chol(A);  # Unstable
@time qr(A_32);    # Julia built-in; best in terms of memory allocations; Run twice!
cond(A) = 56.36412841584856
  0.084675 seconds (20.78 k allocations: 20.649 MiB, 24.21% compilation time)
  0.812533 seconds (790.06 k allocations: 76.448 MiB, 21.22% gc time, 76.82% compilation time)
  0.120157 seconds (56.96 k allocations: 13.393 MiB, 48.07% compilation time)
V = vander(LinRange(-1, 1, 20))
@show cond(V)
Q, R = qr(Float32.(V)) # Julia built-in, but with single-precision Floats
@show norm(Q' * Q - I)
Q, R = qr_chol(V) # Unstable; really not orthogonal
@show norm(Q' * Q - I)
cond(V) = 2.7224082312417406e8
norm(Q' * Q - I) = 
1.6641898f-6
norm(Q' * Q - I) = 0.1749736012761826
0.1749736012761826

2. Low-rank structure#

Best low rank approximation#

The SVD can be truncated to yield the best rank-\(k\) approximation of a matrix.

n, k = 2, 1
A = randn(n, n)
Aplot(A)
@show U, S, V = svd(A)
(U, S, V) = svd(A) = SVD{Float64, Float64, Matrix{Float64}, Vector{Float64}}([-0.966377620054708 0.2571270025831574; 0.2571270025831574 0.9663776200547077], [1.6540697594694416, 0.36740419488930603], [-0.6307829286820065 0.7759593397101104; -0.7759593397101104 -0.6307829286820065])
SVD{Float64, Float64, Matrix{Float64}, Vector{Float64}}
U factor:
2×2 Matrix{Float64}:
 -0.966378  0.257127
  0.257127  0.966378
singular values:
2-element Vector{Float64}:
 1.6540697594694416
 0.36740419488930603
Vt factor:
2×2 Matrix{Float64}:
 -0.630783   0.775959
 -0.775959  -0.630783
@show Uhat = U[:, 1:k] # Uhat is now 2x1
@show Shat = S[1:k] # truncate to first k singular values, in this case 1
@show Vhat = V[:, 1:k] # Vhat is now 2x1
@show Ahat = Uhat * diagm(Shat) * Vhat'
@show norm(Ahat)
Aplot(Ahat - A) # we have squished every point onto a line
Uhat = U[:, 1:k] = [-0.966377620054708; 0.2571270025831574;;]
Shat = S[1:k] = [1.6540697594694416]
Vhat = V[:, 1:k] = [-0.6307829286820065; 0.7759593397101104;;]
Ahat = Uhat * diagm(Shat) * Vhat' = 
[1.008278755510557 -1.2403368604227443; -0.2682757638344614 0.3300201624038536]
norm(Ahat) = 1.654069759469442

Example: Galaxies#

Suppose we have two galaxies of size \(n_1 = 100\) and \(n_2 = 200\), each randomly distributed around their respective centers.

galaxy(center, sigma, n) = reshape(center, 1, 3) .+ sigma*randn(n, 3)
g1 = galaxy([0 0 0], 1, 100)
g2 = galaxy([10 0 0], 1, 100)

scatter(g1[:,1], g1[:,2], aspect_ratio=:equal)
scatter!(g2[:,1], g2[:,2])

Forces between stars#

Consider Newton’s law of universal gravitation between two bodies with spatial extent (i.e., not point masses), then we can write the gravitational force from a star at position \(x_2\) acting on a star at position \(x_1\),

\[ F_{1,2} = G \frac{m_1 m_2}{\lVert \mathbf{x}_2 - \mathbf{x}_1 \rVert^3} (\mathbf{x}_2 - \mathbf{x}_1) \]
where \(m_1\) and \(m_2\) are the masses of each star, respectively.

function gravitational_force(g1, g2)
    m = size(g1, 1)
    n = size(g2, 1)
    F = zeros(3*m, n)
    for i in 0:m-1
        for j in 1:n
            r = g2[j,:] - g1[1+i,:]
            F[1+3*i:3*(i+1),j] = r / norm(r)^3
        end
    end
    F
end

# Let's apply it to our two galaxies
gravitational_force(g1, g2)
300×100 Matrix{Float64}:
  0.00809386    0.00897236    0.00844164   …   0.00943165    0.00775605
 -0.00181779   -0.00180624   -0.0013674       -0.000702235  -0.00200539
  0.000982464  -0.000237697  -0.00093514      -0.00135195    0.000931452
  0.0122178     0.0130191     0.0115109        0.0123042     0.0117607
 -0.00118271   -0.000830598  -0.000259041      0.00110427   -0.00162736
  0.000493909  -0.00180677   -0.00269537   …  -0.00344481    0.00046878
  0.00992049    0.01032       0.00919458       0.00974749    0.00959912
 -0.000844702  -0.000569455  -0.000168943      0.000800277  -0.00117753
 -2.80498e-5   -0.00170067   -0.00229494      -0.00283945   -2.7614e-5
  0.0145824     0.0162305     0.0143837        0.0156672     0.0139343
 -0.00183898   -0.00147391   -0.000633043  …   0.00124611   -0.00239165
  0.00156283   -0.00144075   -0.00282418      -0.00383751    0.00147254
  0.00927423    0.0103313     0.00958244       0.0104896     0.00894124
  ⋮                                        ⋱                
  0.0105814     0.0112595     0.0100109        0.0102884     0.0103802
  0.000449664   0.000882565   0.00111823       0.00228796    2.47183e-5
  0.000717063  -0.00109081   -0.00186992   …  -0.00233153    0.000694871
  0.007004      0.00700916    0.0063048        0.00663281    0.00680573
 -0.00070345   -0.000530222  -0.000276511      0.000262548  -0.000899509
 -0.000686559  -0.00166534   -0.00193805      -0.0022879    -0.000661561
  0.00883871    0.00980147    0.0090399        0.00948996    0.0086603
  0.000104009   0.000429515   0.000685197  …   0.0016719    -0.000217438
  0.00138061    7.12902e-5   -0.000717486     -0.00105272    0.00133833
  0.00771815    0.00864538    0.008086         0.00834497    0.00763244
  0.000668245   0.00103405    0.00119456       0.00205664    0.000386986
  0.00161927    0.000604731  -0.000117539     -0.000346841   0.00158522

Spectrum#

g1 = galaxy([0 0 0], 1, 500)
g2 = galaxy([10 0 0], 1, 500)
F = gravitational_force(g1, g2)
@show size(F)
U, S, V = svd(F) # U is 1500 x 500, S is 500 long, and V is 500 x 500
scatter(S, yscale=:log10, ylims=(1e-10, 10), xlims=(0, 200))
size(F) = (1500, 500)
k = 10 # let's truncate at the first 10 singular values
Uhat = U[:,1:k]   # Uhat is now 1500 x 10
Shat = S[1:k]     # Shat is now 10 long
Vhat = V[:,1:k]   # Vhat is now 500 x 10
Fhat = Uhat * diagm(Shat) * Vhat' # Fhat is still 1500 x 500
@show norm(F)
@show norm(F - Fhat) # Fhat is the best rank-10 approximation of F and it is not too far off from F indeed
norm(F) = 5.451123280381913
norm(F - Fhat) = 0.005749113583614124
0.005749113583614124